irreducibility criterion - ترجمة إلى الروسية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

irreducibility criterion - ترجمة إلى الروسية

A SUFFICIENT CONDITION FOR A POLYNOMIAL TO BE UNFACTORABLE
A. Cohn's irreducibility criterion; A. Cohn irreducibility criterion; Cohn irreducibility criterion; Arthur Cohn (mathematician)

irreducibility criterion      

математика

критерий неприводимости

criterion         
WIKIMEDIA DISAMBIGUATION PAGE
Criteria; Criterias; Criterion (disambiguation)
criterion         
WIKIMEDIA DISAMBIGUATION PAGE
Criteria; Criterias; Criterion (disambiguation)
criterion noun критерий, мерило Syn: see standard

تعريف

criterion
(criteria)
A criterion is a factor on which you judge or decide something.
The most important criterion for entry is that applicants must design and make their own work...
N-COUNT: oft N for n/-ing

ويكيبيديا

Cohn's irreducibility criterion

Arthur Cohn's irreducibility criterion is a sufficient condition for a polynomial to be irreducible in Z [ x ] {\displaystyle \mathbb {Z} [x]} —that is, for it to be unfactorable into the product of lower-degree polynomials with integer coefficients.

The criterion is often stated as follows:

If a prime number p {\displaystyle p} is expressed in base 10 as p = a m 10 m + a m 1 10 m 1 + + a 1 10 + a 0 {\displaystyle p=a_{m}10^{m}+a_{m-1}10^{m-1}+\cdots +a_{1}10+a_{0}} (where 0 a i 9 {\displaystyle 0\leq a_{i}\leq 9} ) then the polynomial
f ( x ) = a m x m + a m 1 x m 1 + + a 1 x + a 0 {\displaystyle f(x)=a_{m}x^{m}+a_{m-1}x^{m-1}+\cdots +a_{1}x+a_{0}}
is irreducible in Z [ x ] {\displaystyle \mathbb {Z} [x]} .

The theorem can be generalized to other bases as follows:

Assume that b 2 {\displaystyle b\geq 2} is a natural number and p ( x ) = a k x k + a k 1 x k 1 + + a 1 x + a 0 {\displaystyle p(x)=a_{k}x^{k}+a_{k-1}x^{k-1}+\cdots +a_{1}x+a_{0}} is a polynomial such that 0 a i b 1 {\displaystyle 0\leq a_{i}\leq b-1} . If p ( b ) {\displaystyle p(b)} is a prime number then p ( x ) {\displaystyle p(x)} is irreducible in Z [ x ] {\displaystyle \mathbb {Z} [x]} .

The base 10 version of the theorem is attributed to Cohn by Pólya and Szegő in one of their books while the generalization to any base b is due to Brillhart, Filaseta, and Odlyzko.

In 2002, Ram Murty gave a simplified proof as well as some history of the theorem in a paper that is available online.

A further generalization of the theorem allowing coefficients larger than digits was given by Filaseta and Gross. In particular, let f ( x ) {\displaystyle f(x)} be a polynomial with non-negative integer coefficients such that f ( 10 ) {\displaystyle f(10)} is prime. If all coefficients are {\displaystyle \leq } 49598666989151226098104244512918, then f ( x ) {\displaystyle f(x)} is irreducible over Z [ x ] {\displaystyle \mathbb {Z} [x]} . Moreover, they proved that this bound is also sharp. In other words, coefficients larger than 49598666989151226098104244512918 do not guarantee irreducibility. The method of Filaseta and Gross was also generalized to provide similar sharp bounds for some other bases by Cole, Dunn, and Filaseta.

The converse of this criterion is that, if p is an irreducible polynomial with integer coefficients that have greatest common divisor 1, then there exists a base such that the coefficients of p form the representation of a prime number in that base; this is the Bunyakovsky conjecture and its truth or falsity remains an open question.

What is the الروسية for irreducibility criterion? Translation of &#39irreducibility criterion&#39 to